menu

人工材料

 材料グループはバイオマテリアルを研究するグループで、現在は指導教官4名(藤林俊介先生、後藤公志先生、大槻文悟先生、河井利之先生)、大学院生5名、研究生1名(今村匡志先生)の計12名で研究に励んでおります。

近年バイオマテリアル関連のジャーナルではin vitroの実験を行い、細胞に与える影響も示す必要性が増してきております。細胞実験のノウハウは他のグループの院生やスタッフの先生にご教授頂き、また論文や成書を参照して試行錯誤しながら行っております。

研究内容

 

川田交俊(4回生:H22)

骨セメントに酸化チタン粉末を加えた生体活性骨セメント(オセジョイン)の研究に取り組んでおります。骨粗鬆症モデルや関節内を模したモデルでの生体活性骨セメントの骨結合能などの評価を行っております。

森實一晃(4回生:H22)

敷波保夫先生との共同研究で、スーパーフィクソーブ(ハイドロキシアパタイトとポリ-L-乳酸の複合体)を改良して、吸収性を高めた材料の研究を行っております。以前は材料の供給が不安定でしたが、安定的な供給となり、in vitroの実験も視野に研究を進めております。

正本和誉(3回生:H21)

京大エネルギー科学研究科の薮塚先生との共同研究で、アパタイト核処理を行ったPEEKの生体活性の研究を行っております。また、AgイオンとSrイオンを同時に徐放するチタン金属のin vivoの研究も行っていく予定です。

清水優(3回生:H22)

Selective Laser Melting (SLM)を用いた積層造形法で作成したチタン金属にSrイオンを徐放する処理を加えたインプラントの研究を行っています。また、SLMを用いたチタン合金(Ti6Al4V)の造形の研究も行っております。

 

林信実(2回生:H24)

Gaイオンは骨芽細胞に影響せず、破骨細胞を抑制する効果が示されており、また抗菌性も併せ持つとされています。そのGaイオンを徐放するチタン金属の生体活性能と抗菌性の研究を行っております。

材料研究手法は現在大きな転換期にあり、従来は材料を動物に埋入し、その影響を詳細に評価する手法を行っておりましたが、細胞実験も併せて行うことで材料が細胞に対してどのような影響を及ぼしているのかをより明確に示すことが出来るようになっております。それらを明らかにしていくことはバイオマテリアル基礎実験の醍醐味であります。実験に失敗はつきものですが、現在は院生も多く、指導教官の先生方にもいつでも相談でき、助言を得ることが可能で、また院生の間でも情報を共有しやすい環境です。

また、中部大学、大阪冶金、石原産業、その他企業と共同研究も行っており、工学系の先生方、エンジニアの先生方のプレゼンや討論は医学(整形外科)の視点から得られないような内容であり、非常に興味深く、自身の視野を広げるのに役立つものばかりです。抄読会は毎週水曜の19時から行っており、バイオマテリアルに興味のある先生、ご質問、相談などお持ちの先生はいつでも参加して頂いて結構です。

 

業績

  1. Okuzu Y, Fujibayashi S, Yamaguchi S, Yamamoto K, Shimizu T, Sono T, Goto K, Otsuki B, Matsushita T, Kokubo T, Matsuda S.Strontium and magnesium ions released from bioactive titanium metal promote early bone bonding in a rabbit implant model. Acta Biomater. 2017 Nov;63:383-392. doi: 10.1016/j.actbio.2017.09.019. Epub 2017 Sep 14.
  2. Shimizu T, Fujibayashi S, Yamaguchi S, Otsuki B, Okuzu Y, Matsushita T, Kokubo T, MatsudaS.In vivo experimental study of anterior cervical fusion using bioactive polyetheretherketone in a canine model.PLoS One. 2017 Sep 8;12(9):e0184495. doi: 10.1371/journal.pone.0184495. eCollection 2017.
  3. Otsuki B, Takemoto M, Fujibayashi S, Kimura H, Masamoto K, Matsuda S. Utility of a custom screw insertion guide and a full-scale, color-coded 3D plaster model for guiding safe surgical exposure and screw insertion during spine revision surgery. J Neurosurg Spine. 2016 Jul;25(1):94-102. doi: 10.3171/2015.12.SPINE15678. Epub 2016 Mar 11.PMID:26967985
  4. Shimizu T, Fujibayashi S, Yamaguchi S, Yamamoto K, Otsuki B, Takemoto M, Tsukanaka M, Kizuki T, Matsushita T, Kokubo T, Matsuda S.Bioactivity of sol-gel-derived TiO2 coating on polyetheretherketone: In vitro and in vivo studies.Acta Biomater. 2016 Apr 15;35:305-17. doi: 10.1016/j.actbio.2016.02.007. Epub 2016 Feb 6.
  5. Tsukanaka M, Fujibayashi S, Takemoto M, Matsushita T, Kokubo T, Nakamura T, Sasaki K, Matsuda S.Bioactive treatment promotes osteoblast differentiation on titanium materials fabricated by selective laser melting technology. Dent Mater J. 2016;35(1):118-25. doi: 10.4012/dmj.2015-127.
  6. Taniguchi N, Fujibayashi S, Takemoto M, Sasaki K, Otsuki B, Nakamura T, Matsushita T, Kokubo T, Matsuda S.Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment.Mater Sci Eng C Mater Biol Appl. 2016 Feb;59:690-701. doi: 10.1016/j.msec.2015.10.069. Epub 2015 Oct 28.
  7. Tian Y, Fujibayashi S, Yamaguchi S, Matsushita T, Kokubo T, Matsuda S.In vivo study of the early bone-bonding ability of Ti meshes formed with calcium titanate via chemical treatments.J Mater Sci Mater Med. 2015 Dec;26(12):271. doi: 10.1007/s10856-015-5612-2. Epub 2015 Oct 29.
  8. Tsukanaka M, Fujibayashi S, Otsuki B, Takemoto M, Matsuda S.Osteoinductive potential of highly purified porous β-TCP in mice. J Mater Sci Mater Med. 2015 Mar;26(3):132. doi: 10.1007/s10856-015-5469-4. Epub 2015 Feb 20.
  9. Kawai T, Takemoto M, Fujibayashi S, Tanaka M, Akiyama H, Nakamura T, Matsuda S.Comparison between alkali heat treatment and sprayed hydroxyapatite coating on thermally-sprayed rough Ti surface in rabbit model: Effects on bone-bonding ability and osteoconductivity.J Biomed Mater Res B Appl Biomater. 2015 Jul;103(5):1069-81. doi: 10.1002/jbm.b.33281. Epub 2014 Sep 20.
  10. Tanaka M, Takemoto M, Fujibayashi S, Kawai T, Tsukanaka M, Takami K, Motojima S, Inoue H, Nakamura T, Matsuda S.Development of a novel calcium phosphate cement composed mainly of calcium sodium phosphate with high osteoconductivity.J Mater Sci Mater Med. 2014 Jun;25(6):1505-17. doi: 10.1007/s10856-014-5181-9. Epub 2014 Mar 27.
  11. Kawai T, Takemoto M, Fujibayashi S, Akiyama H, Tanaka M, Yamaguchi S, Pattanayak DK, Doi K, Matsushita T, Nakamura T, Kokubo T, Matsuda S.Osteoinduction on acid and heat treated porous Ti metal samples in canine muscle.PLoS One. 2014 Feb 10;9(2):e88366. doi: 10.1371/journal.pone.0088366. eCollection 2014.
  12. Tsukanaka M, Yamamoto K, Fujibayashi S, Pattanayak DK, Matsushita T, Kokubo T, MatsudaS, Akiyama H.Evaluation of bioactivity of alkali- and heat-treated titanium using fluorescent mouse osteoblasts.J Bone Miner Metab. 2014 Nov;32(6):660-70. doi: 10.1007/s00774-013-0544-8. Epub 2013 Dec 6.
  13. Tanaka M, Takemoto M, Fujibayashi S, Kawai T, Yamaguchi S, Kizuki T, Matsushita T, Kokubo T, Nakamura T, Matsuda S.Bone bonding ability of a chemically and thermally treated low elastic modulus Ti alloy: gum metal.J Mater Sci Mater Med. 2014 Mar;25(3):635-43. doi: 10.1007/s10856-013-5101-4. Epub 2013 Nov 29.
  14. Otsuki B, Takemoto M, Kawanabe K, Awa Y, Akiyama H, Fujibayashi S, Nakamura T, Matsuda S. Developing a novel custom cutting guide for curved peri-acetabular osteotomy.Int Orthop. 2013 Jun;37(6):1033-8. doi: 10.1007/s00264-013-1873-x. Epub 2013 Apr 9.
  15. Kawai T, Takemoto M, Fujibayashi S, Akiyama H, Yamaguchi S, Pattanayak DK, Doi K, Matsushita T, Nakamura T, Kokubo T, Matsuda S.,Osteoconduction of porous Ti metal enhanced by acid and heat treatments. J Mater Sci Mater Med. 2013 Jul;24(7):1707-15. doi: 10.1007/s10856-013-4919-0. Epub 2013 Mar 27.
  16. Kawai T, Takemoto M, Fujibayashi S, Neo M, Akiyama H, Yamaguchi S, Pattanayak DK, Matsushita T, Nakamura T, Kokubo T.,Bone-bonding properties of Ti metal subjected to acid and heat treatments. J Mater Sci Mater Med. 2012 Dec;23(12):2981-92. doi: 10.1007/s10856-012-4758-4. Epub 2012 Sep 5.
  17. Fujibayashi S, Takemoto M, Neo M, Matsushita T, Kokubo T, Doi K, Ito T, Shimizu A, Nakamura T. A novel synthetic material for spinal fusion: a prospective clinical trial of porous bioactive titanium metal for lumbar interbody fusion. Eur Spine J. 2011 Sep;20(9):1486-95. doi: 10.1007/s00586-011-1728-3. Epub 2011 Mar 3.
  18. Fukuda A, Takemoto M, Saito T, Fujibayashi S, Neo M, Pattanayak DK, Matsushita T, Sasaki K, Nishida N, Kokubo T, Nakamura T. Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting. Acta Biomater. 2011 May;7(5):2327-36. doi: 10.1016/j.actbio.2011.01.037. Epub 2011 Feb 2.
  19. Akiyama N, Takemoto M, Fujibayashi S, Neo M, Hirano M, Nakamura T. Difference between dogs and rats with regard to osteoclast-like cells in calcium-deficient hydroxyapatite-induced osteoinduction. J Biomed Mater Res A. 2011 Feb;96(2):402-12. doi: 10.1002/jbm.a.32995. Epub 2010 Dec 8.
  20. Tanaka K, Takemoto M, Fujibayashi S, Neo M, Shikinami Y, Nakamura T.A bioactive and bioresorbable porous cubic composite scaffold loaded with bone marrow aspirate: a potential alternative to autogenous bone grafting. Spine (Phila Pa 1976). 2011 Mar 15;36(6):441-7. doi: 10.1097/BRS.0b013e3181d39067.
  21. Saito T, Takemoto M, Fukuda A, Kuroda Y, Fujibayashi S, Neo M, Honjoh D, Hiraide T, Kizuki T, Kokubo T, Nakamura T. Effect of titania-based surface modification of polyethylene terephthalate on bone-implant bonding and peri-implant tissue reaction. Acta Biomater. 2011 Apr;7(4):1558-69. doi: 10.1016/j.actbio.2010.11.018. Epub 2010 Nov 24.
  22. Fukuda A, Takemoto M, Saito T, Fujibayashi S, Neo M, Yamaguchi S, Kizuki T, Matsushita T, Niinomi M, Kokubo T, Nakamura T. Bone bonding bioactivity of Ti metal and Ti-Zr-Nb-Ta alloys with Ca ions incorporated on their surfaces by simple chemical and heat treatments. Acta Biomater. 2011 Mar;7(3):1379-86. doi: 10.1016/j.actbio.2010.09.026. Epub 2010 Sep 29.
  23. Pattanayak DK, Fukuda A, Matsushita T, Takemoto M, Fujibayashi S, Sasaki K, Nishida N, Nakamura T, Kokubo T. Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments. Acta Biomater. 2011 Mar;7(3):1398-406. doi: 10.1016/j.actbio.2010.09.034. Epub 2010 Sep 29.
  24. Kokubo T, Pattanayak DK, Yamaguchi S, Takadama H, Matsushita T, Kawai T, Takemoto M, Fujibayashi S, Nakamura T.Positively charged bioactive Ti metal prepared by simple chemical and heat treatments. J R Soc Interface. 2010 Oct 6;7 Suppl 5:S503-13. doi: 10.1098/rsif.2010.0129.focus. Epub 2010 May 5.
  25. So K, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T. Reinforcement of tendon attachment to bioactive porous titanium by BMP-2-induced ectopic bone formation. J Biomed Mater Res A. 2010 Jun 15;93(4):1410-6. doi: 10.1002/jbm.a.32640.
  26. Nasu T, Takemoto M, Akiyama N, Fujibayashi S, Neo M, Nakamura T. EP4 agonist accelerates osteoinduction and degradation of beta-tricalcium phosphate by stimulating osteoclastogenesis. J Biomed Mater Res A. 2009 Jun;89(3):601-8. doi: 10.1002/jbm.a.31984.
  27. Onishi E, Fujibayashi S, Takemoto M, Neo M, Maruyama T, Kokubo T, Nakamura T. Enhancement of bone-bonding ability of bioactive titanium by prostaglandin E2 receptor selective agonist.Biomaterials. 2008 Mar;29(7):877-83. Epub 2007 Nov 28.
  28. Takemoto M, Fujibayashi S, Neo M, So K, Akiyama N, Matsushita T, Kokubo T, Nakamura T. A porous bioactive titanium implant for spinal interbody fusion: an experimental study using a canine model.J Neurosurg Spine. 2007 Oct;7(4):435-43.
  29. Goto K, Hashimoto M, Takadama H, Tamura J, Fujibayashi S, Kawanabe K, Kokubo T, Nakamura T. Mechanical, setting, and biological properties of bone cements containing micron-sized titania particles. J Mater Sci Mater Med. 2008 Mar;19(3):1009-16. Epub 2007 Aug 1.
  30. So K, Takemoto M, Fujibayashi S, Neo M, Kyomoto M, Hayami T, Hyon SH, Nakamura T. Antidegenerative effects of partial disc replacement in an animal surgery model.Spine (Phila Pa 1976). 2007 Jul 1;32(15):1586-91.
  31. Hasegawa S, Neo M, Tamura J, Fujibayashi S, Takemoto M, Shikinami Y, Okazaki K, Nakamura T. In vivo evaluation of a porous hydroxyapatite/poly-DL-lactide composite for bone tissue engineering.J Biomed Mater Res A. 2007 Jun 15;81(4):930-8.
  32. Liang B, Fujibayashi S, Fujita H, Ise K, Neo M, Nakamura T.Long-term follow-up study of bioactive bone cement in canine total hip arthroplasty. J Long Term Eff Med Implants. 2006;16(4):291-9.
  33. Liang B, Fujibayashi S, Fujita H, Ise K, Neo M, Nakamura T. Long-term follow-up study of bioactive bone cement in canine total hip arthroplasty. J Long Term Eff Med Implants. 2006;16(4):291-9
  34. Shikinami Y, Okazaki K, Saito M, Okuno M, Hasegawa S, Tamura J, Fujibayashi S, Nakamura T. Bioactive and bioresorbable cellular cubic-composite scaffolds for use in bone reconstruction. J R Soc Interface. 2006 Aug 8
  35. Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: Three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials. 2006 Dec;27(35):5892-900. Epub 2006 Sep 1.
  36. B. Liang, S. Fujibayashi, H. Fujita, K. Ise, M. Neo, T. Nakamura, “Long-term follow-up study of bioactive bone cement in canine total hip arthroplasty” J. Long Term Eff. Med. Implants, 16, 291-300, (2006)
  37. Goto K, Shinzato S, Fujibayashi S, Tamura J, Kawanabe K, Hasegawa S, Kowalski R, Nakamura T. The biocompatibility and osteoconductivity of a cement containing beta-TCP for use in vertebroplasty. J Biomed Mater Res A. 2006 Sep 1;78(3):629-37.
  38. So K, Fujibayashi S, Neo M, Anan Y, Ogawa T, Kokubo T, Nakamura T. Accelerated degradation and improved bone-bonding ability of hydroxyapatite ceramics by the addition of glass. Biomaterials. 2006 Sep;27(27):4738-44. Epub 2006 Jun 6.
  39. Takemoto M, Fujibayashi S, Neo M, Suzuki J, Kokubo T, Nakamura T. Bone-bonding ability of a hydroxyapatite coated zirconia-alumina nanocomposite with a microporous surface. J Biomed Mater Res A. 2006 May 31;78A(4):693-701
  40. Takemoto M, Fujibayashi S, Neo M, Suzuki J, Matsushita T, Kokubo T, Nakamura T. Osteoinductive porous titanium implants: Effect of sodium removal by dilute HCl treatment. Biomaterials. 2006 May;27(13):2682-91.
  41. Suzuki T, Fujibayashi S, Nakagawa Y, Noda I, Nakamura T. Ability of zirconia double coated with titanium and hydroxyapatite to bond to bone under load-bearing conditions. Biomaterials. 2006 Oct;27(7):996-1002
  42. Hasegawa S, Ishii S, Tamura J, Furukawa T, Neo M, Matsusue Y, Shikinami Y, Okuno M, Nakamura T. A 5-7 year in vivo study of high-strength hydroxyapatite/poly(L-lactide) composite rods for the internal fixation of bone fractures.Biomaterials. 2006 Mar;27(8):1327-32.
  43. Goto K, Tamura J, Shinzato S, Fujibayashi S, Hashimoto M, Kawashita M, Kokubo T, Nakamura T. Bioactive bone cements containing nano-sized titania particles for use as bone substitutes. Biomaterials. 2005 Nov;26(33):6496-505
  44. Takemoto M, Fujibayashi S, Neo M, Suzuki J, Kokubo T, Nakamura T. Mechanical properties and osteoconductivity of porous bioactive titanium. Biomaterials. 2005 Oct;26(30):6014-23
  45. Goto M,Hashimoto M, Fujibayashi S, Kokubo T, Nakamura T. New Bioactive Bone Cement Containing Nano-Sized Titania Particles. Key Engineering Materials Vols. 284-286: 97-100 2005
  46. Hasegawa S, Tamura J, Neo M, Goto K, Shikinami Y, Saito M, Kita M, Nakamura T. In vivo evaluation of a porous hydroxyapatite/poly-DL-lactide composite for use as a bone substitute. J Biomed Mater Res A. 2005 Dec 1;75(3):567-79.
  47. Fujibayashi S, Neo M, Kim HM, Kokubo T, Nakamura T. Osteoinduction of porous bioactive titanium. Biomaterials 25: 443-450 2004
  48. Ohsawa K, Neo M, Okamoto T, Tamura J, Nakamura T. In vivo absorption of porous apatite- and wollastonite-containing glass-ceramic. J Mater Sci Mater Med. 2004 Aug;15(8):859-64.
  49. Shinzato S, Nakamura T, Kawanabe K, Kokubo T. In vivo aging test for a bioactive bone cement consisting of glass bead filler and PMMA matrix. J Biomed Mater Res B Appl Biomater. 2004 Feb 15;68(2):132-9.
  50. Fujibayashi S, Kim HM, Neo M, Uchida M. Kokubo T, Nakamura T. Repair of segmental long bone defect in rabbit femur using bioactive titanium cylindrical mesh cage. Biomaterials 24: 3445-3451 2003
  51. Liang B, Fujibayashi S, Tamura J, Neo M, Kim HM, Uchida M, Kokubo T, Nakamura T. Histological and mechanical investigation of the bone-bonding ability of anodically oxidized titanium in rabbits. Biomaterials. 2003 Dec; 24(27):4959-66.
  52. Nishiguchi S, Fujibayashi S, Kim HM, Kokubo T, Nakamura T. Biology of alkali- and heat-treated titanium implants. J Biomed Mater Res A. 2003 Oct 1;67(1):26-35.
  53. Fujibayashi S, Neo M, Kim HM, Kokubo T, Nakamura T. A comparative study between in vivo bone ingrowth and in vitro apatite formation on Na(2)O-CaO-SiO(2) glasses. Biomaterials. 24(8): 1349-56 2003
  54. Uchida M, Kim HM, Kokubo T, Fujibayashi S, Nakamura T. Structural dependence of apatite formation on titania gels in a simulated body fluid. J Biomed Mater Res. 64(1): 164-70 2003
  55. Ishii S, Tamura J, Furukawa T, Nakamura T, Matsusue Y, Shikinami Y, Okuno M. Long-term study of high-strength hydroxyapatite/poly(L-lactide) composite rods for the internal fixation of bone fractures: a 2-4-year follow-up study in rabbits. J Biomed Mater Res B Appl Biomater. 2003 Aug 15;66(2):539-47.
  56. Tanaka K, Tamura J, Kawanabe K, Nawa M, Uchida M, Kokubo T, Nakamura T. Phase stability after aging and its influence on pin-on-disk wear properties of Ce-TZP/Al2O3 nanocomposite and conventional Y-TZP. J Biomed Mater Res A. 2003 Oct 1;67(1):200-7.
  57. Tanaka K, Tamura J, Kawanabe K, Shimizu M, Nakamura T. Effect of alumina femoral heads on polyethylene wear in cemented total hip arthroplasty. Old versus current alumina. J Bone Joint Surg Br. 2003 Jul;85(5):655-60.
  58. Shinzato S, Nakamura T, Kawanabe K, Kokubo T. PMMA-based bioactive cement: effect of CaF2 on osteoconductivity and histological change with time. J Biomed Mater Res B Appl Biomater. 2003 May 15;65(2):262-71.
  59. Tanaka K, Tamura J, Kawanabe K, Nawa M, Oka M, Uchida M, Kokubo T, Nakamura T. Ce-TZP/Al2O3 nanocomposite as a bearing material in total joint replacement. J Biomed Mater Res. 2002;63(3):262-70.
  60. Kamimura M, Tamura J, Shinzato S, Kawanabe K, Neo M, Kokubo T, Nakamura T. Interfacial tensile strength between polymethylmethacrylate-based bioactive bone cements and bone. J Biomed Mater Res. 2002 Sep 15;61(4):564-71.
  61. Shinzato S, Nakamura T, Kokubo T, Kitamura Y. Composites consisting of poly(methyl methacrylate) and alumina powder: an evaluation of their mechanical and biological properties. J Biomed Mater Res. 2002 Jun 15;60(4):585-91.
  62. Shinzato S, Nakamura T, Ando K, Kokubo T, Kitamura Y. Mechanical properties and osteoconductivity of new bioactive composites consisting of partially crystallized glass beads and poly(methyl methacrylate). J Biomed Mater Res. 2002 Jun 15;60(4):556-63.
  63. Shinzato S, Nakamura T, Kokubo T, Kitamura Y. PMMA-based bioactive cement: effect of glass bead filler content and histological change with time.J Biomed Mater Res. 2002 Feb;59(2):225-32.
  64. Fujibayashi S, Senaha Y, Yoshihara S, Tamura J, Nakamura T. Long-term follow-up study of bioactive bone cement for repairing a segmental defect in a canine femur. J Long Term Eff Med Implants. 11(1-2): 93-103 2001
  65. Fujibayashi S, Nakamura T, Nishiguchi S, Tamura J, Uchida M, Kim HM, Kokubo T. Bioactive titanium: effect of sodium removal on the bone-bonding ability of bioactive titanium prepared by alkali and heat treatment. J Biomed Mater Res. 56(4):562-70 2001
  66. Ohsawa K, Neo M, Matsuoka H, Akiyama H, Ito H, Nakamura T. Tissue responses around polymethylmethacrylate particles implanted into bone: analysis of expression of bone matrix protein mRNAs by in situ hybridization. J Biomed Mater Res. 2001 Mar 15;54(4):501-8.
  67. Shinzato S, Nakamura T, Kokubo T, Kitamura Y. A new bioactive bone cement: effect of glass bead filler content on mechanical and biological properties. J Biomed Mater Res. 2001 Mar 15;54(4):491-500.
  68. Shinzato S, Nakamura T, Tamura J, Kokubo T, Kitamura Y. Bioactive bone cement: effects of phosphoric ester monomer on mechanical properties and osteoconductivity. J Biomed Mater Res. 2001 Sep 15;56(4):571-7.
  69. Shinzato S, Nakamura T, Kokubo T, Kitamura Y. Bioactive bone cement: effect of filler size on mechanical properties and osteoconductivity. J Biomed Mater Res. 2001 Sep 5;56(3):452-8.
  70. Shinzato S, Nakamura T, Kokubo T, Kitamura Y. Bioactive bone cement: Effect of silane treatment on mechanical properties and osteoconductivity. J Biomed Mater Res. 2001 Jun 5;55(3):277-84.
  71. Nishiguchi S, Kato H, Fujita H, Oka M, Kim HM, Kokubo T, Nakamura T. Titanium metals form direct bonding to bone after alkali and heat treatments. Biomaterials. 2001 Sep;22(18):2525-33.
  72. Nishiguchi S, Kato H, Neo M, Oka M, Kim HM, Kokubo T, Nakamura T. Alkali- and heat-treated porous titanium for orthopedic implants.J Biomed Mater Res. 2001 Feb;54(2):198-208.